The beta hairpin structure within ribosomal protein S5 mediates interplay between domains II and IV and regulates HCV IRES function

نویسندگان

  • Prasanna Bhat
  • Shivaprasad Shwetha
  • Divya Khandige Sharma
  • Agnel Praveen Joseph
  • Narayanaswamy Srinivasan
  • Saumitra Das
چکیده

Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES-40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES-RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA-protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES-RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S-3' UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES-RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation

Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interpl...

متن کامل

The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy.

Translation of hepatitis C virus (HCV) RNA is initiated via the internal ribosome entry site (IRES), located within the 5' untranslated region. Although the secondary structure of this element has been predicted, little information on the tertiary structure is available. Here we report the first structural characterization of the HCV IRES using electron microscopy. In vitro transcribed RNA appe...

متن کامل

Functional architecture of HCV IRES domain II stabilized by divalent metal ions in the crystal and in solution.

The RNA genome of the hepatitis C virus (HCV) contains an internal ribosome entry site (IRES), which binds to the hostcell 40S ribosomal subunit and initiates protein translation in the absence of most initiation factors. Recruitment of the ribosomal subunit to the HCV RNA is driven by the high affinity of the IRES–40S interaction. The IRES sequence adopts a highly ordered secondary structure (...

متن کامل

Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit

Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253-302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with th...

متن کامل

Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES.

Structural integrity of the hepatitus C virus (HCV) 5' UTR region that includes the internal ribosome entry site (IRES) element is known to be essential for efficient protein synthesis. The functional explanation for this observation has been provided by the recent evidence that binding of several cellular factors to the HCV IRES is dependent on the conservation of its secondary structure. In o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015